Load the AidData Global Chinese Development Finance 2.0 Dataset
Source:R/analysis_helpers.R
get_gcdf2_dataset.Rd
get_gcdf2_dataset()
makes it easy to load AidData's Global Chinese Development Finance Dataset, Version 2.0
(GCDF 2.0). By default, the function adds standardized country names that make it easier to merge it with other datasets. The standardized country names are described in the documentation for gcdf2_standardized_countrynames.
Setting standardized_countrynames = FALSE
is equivalent to simply calling the gcdf2_dataset data object. The data definitions are available in the gcdf2_data_dictionary.
Arguments
- standardized_countrynames
set to
TRUE
by default, this argument attaches standardized country names to make it easier to join the dataset with other datasets.
Examples
# returns the GCDF 2.0 dataset, with standardized country names
get_gcdf2_dataset()
#> # A tibble: 13,427 × 73
#> country_name iso3c country_or_regional aid_data_tuff_project_id
#> <chr> <chr> <chr> <dbl>
#> 1 Afghanistan AFG country 53631
#> 2 Afghanistan AFG country 53632
#> 3 Afghanistan AFG country 53633
#> 4 Afghanistan AFG country 53634
#> 5 Afghanistan AFG country 53636
#> 6 Afghanistan AFG country 53637
#> 7 Afghanistan AFG country 53644
#> 8 Afghanistan AFG country 53999
#> 9 Afghanistan AFG country 54396
#> 10 Afghanistan AFG country 56587
#> # ℹ 13,417 more rows
#> # ℹ 69 more variables: recommended_for_aggregates <chr>, umbrella <chr>,
#> # financier_country <chr>, recipient <chr>, recipient_region <chr>,
#> # commitment_year <dbl>, commitment_year_estimated <chr>,
#> # implementation_start_year <dbl>, completion_year <dbl>, title <chr>,
#> # description <chr>, staff_comments <chr>, status <chr>, intent <chr>,
#> # flow_type <chr>, concessional <chr>, flow_class <chr>, sector_code <dbl>, …
# returns the GCDF 2.0 dataset as-is.
get_gcdf2_dataset(standardized_countrynames = FALSE)
#> # A tibble: 13,427 × 70
#> aid_data_tuff_project_id recommended_for_aggrega…¹ umbrella financier_country
#> <dbl> <chr> <chr> <chr>
#> 1 53631 Yes No China (People's …
#> 2 53632 Yes No China (People's …
#> 3 53633 Yes No China (People's …
#> 4 53634 Yes No China (People's …
#> 5 53636 Yes No China (People's …
#> 6 53637 Yes No China (People's …
#> 7 53644 Yes No China (People's …
#> 8 53999 Yes No China (People's …
#> 9 54396 No No China (People's …
#> 10 56587 Yes No China (People's …
#> # ℹ 13,417 more rows
#> # ℹ abbreviated name: ¹recommended_for_aggregates
#> # ℹ 66 more variables: recipient <chr>, recipient_region <chr>,
#> # commitment_year <dbl>, commitment_year_estimated <chr>,
#> # implementation_start_year <dbl>, completion_year <dbl>, title <chr>,
#> # description <chr>, staff_comments <chr>, status <chr>, intent <chr>,
#> # flow_type <chr>, concessional <chr>, flow_class <chr>, sector_code <dbl>, …
# the latter is equivalent to simply calling the [gcdf2_dataset] data object
gcdf2_dataset
#> # A tibble: 13,427 × 70
#> aid_data_tuff_project_id recommended_for_aggrega…¹ umbrella financier_country
#> <dbl> <chr> <chr> <chr>
#> 1 53631 Yes No China (People's …
#> 2 53632 Yes No China (People's …
#> 3 53633 Yes No China (People's …
#> 4 53634 Yes No China (People's …
#> 5 53636 Yes No China (People's …
#> 6 53637 Yes No China (People's …
#> 7 53644 Yes No China (People's …
#> 8 53999 Yes No China (People's …
#> 9 54396 No No China (People's …
#> 10 56587 Yes No China (People's …
#> # ℹ 13,417 more rows
#> # ℹ abbreviated name: ¹recommended_for_aggregates
#> # ℹ 66 more variables: recipient <chr>, recipient_region <chr>,
#> # commitment_year <dbl>, commitment_year_estimated <chr>,
#> # implementation_start_year <dbl>, completion_year <dbl>, title <chr>,
#> # description <chr>, staff_comments <chr>, status <chr>, intent <chr>,
#> # flow_type <chr>, concessional <chr>, flow_class <chr>, sector_code <dbl>, …